
 

When the updating process is tractable the last step that usingobservatie

to update prior and conditional probability
Approaches

Gibbs sampling
Langevin Monte Carlo

Samplingfrom a Laplaceapproximation

Bootstrap

Example Binary Feedback
The travel time exampleagain We let thegraphto represent

a binomialbridge with M stages Let Oe be an independent

gamma distribution with EEOe t EEOE I 5 and the observation

yet0 lo withMb
ie explzenaoMO w

re rly D It E O M

Thismodel prevents us fromusing the conjugate properties because

The gamma distribution is not a conjugate priorof Gelo

Bayesian Inference isalso not easy because when Xt yet are
observed

map argmax PLOlXt Yt
argmafx Ply4Xt O Plot p
Youneed to manuallytakethe derivative andthe
result is complex



Let ft denote the posteriorpdfof 0 given a historyof
data Htt cxiiyiBI.fi i e

ft I Pco Htt

Following TS framework
1 Sampling 8 from ft I
2 Find the optimal net for deterministic

Apply Xe and observe rye

3 Update to ft

Here we introduce how to approximate the firststep ie
sampling 8from It 1
I Gibbs Sampling
Gibbs sampling is a general Markov chain MonteCarlo
MCMC algorithm for drawing approximate samples from
multivariate pdf
Gibbs sampling produces a sequenceof sampleddata

02

forming a Markov chainwith a stationary distribution fly
Under reasonable technical conditions sufficientamountof samples
the limit distribution converges to ft l



Gibbs sampling Framework to generate jointdistribution Xi Rn

Start with a random value in feasibleregionX LX i Xn

for round r I 2 do
Given K2 Xu use poxInez x to randomlychooseX
Giveh X Xz Xu UseThatx Xs Xu to randomly XI

i

Given Xi Xn 1 use Pxnl x xn 1 to randomlychoosea Xn

Then our new sample this time is
Xr Xi xd xn l

When r some magic number

The keypoint for using Gibbs sampling is to get

f PurlCX xn fxr and thenget a sample af

If we want an arbitrary sample with CDF F
k Y
I

CDT

n i
Xo i DX

We sample y from a uniform distribution in o D and
then figure out the curriespending x from Y then Xu F



2 Laplace Approximation

Let parameter 0 ER be a R V We havecollectedsome
data D We want to get the posteriorof 0

PcofD f f lol
P is the normalization term to make tf a valid pdf
fco is a function of a

Laplace Approximation framework

The second order Taylor Expenster
Let Oo be the mode of of PC01D where

Do angwfax PLOIDI

Oo can be found either analytically or numerically
The let gio log PLOID geo around Oo can be

approximatedby
GLO L gCoo t g'tOo O Oo t g coo co Oo

Since Oo is a maximum value gCoo
So guess geo I gyou co o

ddbsott fffitffe.io

Then we apply the exponential function to both side

exp Glo exp geo t I g Coo LO 005



f f Oo expCdg Oo O Oo5 where glotheffio

The normalization constant
P Safe01 do

fr fcoo exp Ig'tOo O Oo5 do

too Spa expC
Oo t

go
2 C 0 I

do

looks like Normal Distribution
We make use of the Normal Distribution to compute this
integration

Let f E then the pdf of NCH G satisfies

I fr fat expC dx

Speftp.T exp l
45
g dx

Speexpc 41 d x 2

Go back to our integration

f f o7 f expC G 005 o

f g'go
2 Cgtfo

d

fco FTL
Fgfo



Assembling All Parts

PLOID f f lol
8 1 to exp zig co co0.5fto Fa

f
expCFa 5 2 807

JV Oo g where gKoo dqo toffeeIo
Then we can use a Gaussian to approximate the posterur

3 Langevin Monte Carlo
This is another MCMC butmakes use of gradient information
Theidea is to samplethe locationof a partical doing Brownian

motion in a restricted area andthe process is characterizedby
Langevin dynamics and define in differential equation

Let gio be the target pdf of 0 posterior we want and
we analyze its logarithm to make lngco having morebetterproperties
1Say L smooth So

geo f e
Into and f is the normalization team

f fo e lmao't do
DenoteUCO lingcod and usually 0 is ofveryhighdimensie
Wefurther assume UCO to be



differentiable ie D ULO exists and can beefficiently
computed

UCO is 2 smooth DZUCO exists and exists a sufficiently

large L such that
11DU.CO DUC027H E L 110 0211 for any 01,02EO

Langevin dynamics refer to the diffusion process
Bed Bdot R UlOt dt
p standardBrownian

dimension
Motion

of Brownian

Apply Euler Maruyama to sample the diffusion path

01mi fat th gion t
FEwynD

iid stand Gaussian
stepsize

0mi dnt EA Plugcold freakWn
A is the PSD preconditioningmatrix with
A Dun Glo go negative inverse

Hessianwhere Oo argmqxlncgcos



4 Bootstrap Method
Usually bootstrapmethod is specific to a particularproblem
and usually notable to begeneralized to more complexproblem
easily Here is one example for Bernoulli BanditMachine
Like LaplaceApproximation we assume 0 ERd and we have

historical data He i cXi Yi andHtt sampled uniformly
with replacement from Htt 4

key idea 1

For Bernoulli model thelikelihood of 0 given the historicaldata
Htt for the shortestpath recommendation problem Binary
feedback described on the firstpage

t t 1 Ft
Italo Tha ie expcezq.ge M

Th t He HeEee Ml

We can use MLE to give an estimation of 0 but the
problem to MLE is its relatively poor performance when t issmall

notenoughdata and MLE can notmake use of pr.br info
about g107 even if we have it
The playaround is as follows

8 argmqx e
10 05 Eco 09 Iyo



Here O is a random samplefrom priondistribution fo
Z is the covariancematrix of fo

This approximation utilizes the intuition that

It 110 Pr FT O
to go from MLE to MAP we need

argmqx Prc
HYO

argnfax
Prittto KO

e
co 05 I 01

REIFY is a Gaussian with mean 0 and
covariance 2 Then e

O 05 210 00 Lego is an

approximation of posterior which is also the approximationofprior
forthenextround f t t O The reason we use Gaussian even

though we know Ou Gamma is inspired by Laplace Approximation

when Littledata has beengathered is more like00
and therefore scatered randomly among 0 s support This encourages
the agentplayer to explore more aboutthesystem

when more data hasbeen gathered the 8 is more determined
bythe likelihood term It 1 O and the randomness moststemsfrom
the random selectionof Flt 1 from H i i

In the shortestpath problem the approximatedposterior or
Italo is a log concave function therefore can beefficiently
computedusing Newton method with a backtracking line



search to maximize InCft i

For problems not easy to find the optimal 8 the framework
can still be applied with local optimal or even an approximated
maxima due to the natureof numerical iteration method

The performance of four approximations for the binary
feedbackexample

From the performance Bootstrapping works as well as Laplace
The advantage of Bootstrapping is it's nonparametric and
wonk reasonably regardlessof the formof posterior It's nonparametric
because it doesn't assume 0 to befrom Gaussian butonly
take a random samplefrom a Gaussian while Laplace alwaysassume
the posterior is Gaussian
The disadvantage is that no guaranteeof performance can be



achieved


